Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons
نویسندگان
چکیده
Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering.
منابع مشابه
Charged magnetoexcitons in two-dimensions: magnetic translations and families of dark states
We show that optical transitions of charged excitons in semiconductor heterostructures are governed in magnetic fields by a novel exact selection rule, a manifestation of magnetic translations. It is shown that the spin-triplet ground state of the quasi-two-dimensional charged exciton X--a bound state of two electrons and one hole-is optically inactive in photoluminescence at finite magnetic fi...
متن کاملDiffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides
Excitonic effects play a particularly important role in the optoelectronic behavior of twodimensional semiconductors. To facilitate the interpretation of experimental photoabsorption and photoluminescence spectra we provide (i) statistically exact diffusion quantum Monte Carlo bindingenergy data for a Mott-Wannier model of (donor/acceptor-bound) excitons, trions, and biexcitons in two-dimension...
متن کاملOptical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide
Defects play a significant role in tailoring the optical properties of two-dimensional materials. Optical signatures of defect-bound excitons are important tools to probe defective regions and thus interrogate the optical quality of as-grown semiconducting monolayer materials. We have performed a systematic study of defect-bound excitons using photoluminescence (PL) spectroscopy combined with a...
متن کاملEnergy spectra and photoluminescence of fractional quantum Hall systems containing a valence-band hole
The energy spectrum of a two-dimensional electron gas (2DEG) interacting with a valence-band hole is studied in the high magnetic field limit as a function of the filling factor ν and the separation d between the electron and hole layers. For d smaller than the magnetic length λ, the hole binds one or more electrons to form neutral (X) or charged (X−) excitons. The low-lying states can be under...
متن کاملElectrical control of neutral and charged excitons in a monolayer semiconductor.
Monolayer group-VI transition metal dichalcogenides have recently emerged as semiconducting alternatives to graphene in which the true two-dimensionality is expected to illuminate new semiconducting physics. Here we investigate excitons and trions (their singly charged counterparts), which have thus far been challenging to generate and control in the ultimate two-dimensional limit. Utilizing hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013